[LOGICA] Strategia statistica per vincere alla battaglia navale.

Uno dei giochi più semplici in cui applicare logica matematica è la battaglia navale. Per molti si tratta di un gioco di “culo” e un pizzico di intelligenza. Una volta sparato “a caso”, se si ha la fortuna di prendere la nave, si tratta solo di capire come è messa, se per orizzontale o verticale, e sparare accanto cercando di affondarla.

In realtà, anche se non molto, ma c’è la possibilità di applicare maggiore strategia, anche in un gioco così semplice come la battaglia navale. Prendiamo ad esempio un quadrato di 10 x 10 (il classico che si disegna a quadretti nei quaderni durante le ore di lezione).

Oltre ad andare a caso esistono due modi di “setacciare” il mare alla ricerca delle navi:

Metodo A (un colpo ogni due caselle)
Si setaccia lo schema con 50 colpi con la certezza matematica di avere non solo individuato tutte le navi, ma probabilmente anche la loro posizione (almeno per buona parte delle navi).

Metodo B (un colpo ogni tre caselle)
Si ricercano le navi con una logica più rapida (sono sufficienti 34 colpi infatti) per riuscire a portare a casa un risultato migliore, aumentando il rischio di perdersi le navi lunghe due quadratini.

schemi-battaliga-navale-per-avere-maggiori-probabilita-di-vittoria

La scelta se applicare una strategia o l’altra è legata alla decisione presa ad inizio partita in merito a quante navi da due saranno dislocate sulle mappe. Una strategia vincente è iniziare con lo schema B e qualora non si fossero ancora individuate tutte le navi, dopo il 34° colpo (cosa rara ma possibile), potrete sempre passare al setaccio integrando lo schema con uno pseudo schema A, anche se sarà difficile integrarlo vista la differenza sostanziale di pattern.

Una simulazione al computer dimostra alla 34° mossa più efficacie lo schema B nella ricerca delle navi nemiche, dimostrando una probabilità di individuare tutte le navi più alta di quella dello schema A.

3 Comments

  1. Alessandro

    Ciao Fabio, ieri sera durante una partita a battaglia navale con un amico, ci siamo detti perché non trovare il modo più efficiente per chiamare le coordinate? E siamo giunti alla conclusione che la strategia migliore è quella delle diagonali (dal punto di vista geometrico è anche molto intuitivo poiché le navi si possono mettere in verticale e orizzontale, dunque un retta a 45° è il modo migliore per risolvere “l’enigma”), dopo aver studiato la strategia migliore per navi tra dimensioni: 2;3;4;5. Avendo a disposizione però una area di gioco 11*8, ma il succo non cambia, l’algoritmo rimane sempre lo stesso, ovvero quello di tracciare la retta tangente ad un qualsiasi angolo, per comodità in alto a sinistra e tracciare altrettante linea perpendicolari e distanziate tra loro in orizzontale e verticale di n-1 caselle a seconda dell’ampiezza della nave. Poi mi sono detto fammi dare un occhiata sul web se esiste un algoritmo migliore, ed effettivamente il tuo è molto simile, anzi uguale nel caso della nave da 2, ma con un piccolo errore in quello da 3, le caselle oscurate dovrebbero essere 33, e non 34! Questo perché se immaginiamo di prolungare le rette (le caselle colorate) esse possiamo traslarle, nel tuo caso verso nord-est o sud-ovest. Abbiamo notato che si avrà il minor numero di caselle colorate quando ci saranno il minor numero di rette perpendicolari sull’area di gioco, e nel caso da navi da 3 possono esserci addirittura 6 anziché 7 rette perpendicolari, che ci faranno risparmiare una casella avendo così una strategia leggermente migliore 🙂
    Comunque, ho dato un’occhiata a tutti gli articoli del tuo sito e devo ammettere che sei un soggetto veramente interessante, e sembra che condividi una serie di interessi comuni ai miei, perciò mi ritengo grato e sorpreso di essere finito qui.

    • fabio

      Ciao Alessandro, lo sai che non ho capito la parte finale del ragionamento sulle navi da 3? Puoi mandarmi per favore un disegno e lo aggiungo a commenti?

      • Luca

        Ciao Fabio credo umilmente di aver capito io cosa intende Alessandro.
        Non so i termini tecnici, chiedo scusa per questo.
        In sostanza immagina di colorare di arancio nello schema B le caselle i1, j2, poi f1,g2,h3 eccetera fino a c10. A tabella completa avrai utilizzato 33 colpi sempre lasciando due quadrati vuoti tra una fila di colpi e l’altra.
        Ciao!

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Current month ye@r day *